A cura di: Francesco Speciale

Calcolare le coordinate del punto medio del segmento $bar{AB}$, essendo $A(sqrt2-1;3); B(sqrt2+1;-5)$.


Svolgimento
Le coordinate del punto medio di un segmento sono le semisomme (medie aritmetiche)
delle coordinate omonime degli estremi.
Quindi indichiamo con $M$ il punto medio del segmento $bar{AB}$, le sue coordinate saranno (x_M;y_M),
dove
$x_M=(x_2+x_1)/2 ^^ y_M=(y_2+y_1)/2$.
Pertanto presi  $A(sqrt2-1;3); B(sqrt2+1;-5)$ si ha
$x_M=(sqrt2+1+sqrt2-1)/2=(2sqrt2)/2=sqrt2 ^^ y_M=(-5+3)/2=-2/2=-1$.
Quindi il punto medio del segmento $bar{AB}$ sarà $M(sqrt2;-1)$.