A cura di: Francesco Speciale

Svolgimento:
trasformando in prodotto:
$senA+senB+senC=2sen((A+B)/2)cos((A-B)/2)+senC$
Essendo $A,B,C$ angoli di un triangolo si ha: $A+B=180°-C$:
$2cos(C/2)cos((A-B)/2)+senC$
Scrivendo $C=(2C)/2$, si ha:
$2cos(C/2)cos((A-B)/2)+sen((2C)/2)=2cos(C/2)cos((A-B)/2)+2sen(C/2)cos(C/2)$
mettendo in evidenza $2cos(C/2)$
$2cos(C/2)(cos((A-B)/2)+sen(C/2))$
come $C=180°-(A+B),sen(C/2)=cos((A+B)/2)$,quindi:
$2cos(C/2)(cos((A-B)/2)+ cos((A+B)/2))$.
trasformando in prodotto, si ha:
$4cos(A/2)cos(B/2)cos(C/2)$.