A cura di: Luca Lussardi

Calcolare la derivata prima delle seguenti funzioni nel punto $x=0$:

1. $f(x)=cos(3x-2)$.

$f'(x)=-3sin(3x)$ da cui $f'(0)=-3 sin (-2)=3sin 2$.

 

2. $f(x)=e^{2x^4-5x}$.

$f'(x)=e^{2x^4-5x}(8x^3-5)$ da cui $f'(0)=-5.

 

3. $f(x)=log(2+cos^3(4x))$.
 

$f'(x)=frac{1}{2+cos^3(4x)}3cos^2(4x)(-sin(4x))$ da cui $f'(0)=0$.

 

4. $f(x)=frac{sin(4x)}{2x^2+e^{-3x}}$.

$f'(x)=frac{cos(4x)4(2x^2+e^{-3x})-sin(4x)(4x-3e^{-3x})}{(2x^2+e^{-3x})^2}$ da cui $f'(0)=4$.