FLUSSO ELETTRICO, TEOREMA DI GAUSS

E SUE CONSEGUENZE

Il flusso elettrico è la quantità di campo che attraversa una superficie. La superficie utile è quella perpendicolare al campo (quindi il flusso è il prodotto scalare del campo per il vettore superficie, vettore unitario perpendicolare in ogni punto alla superficie). Se abbiamo una superficie chiusa il flusso sarà uguale a

 Q/ε

dove Q è la quantità di carica contenuta nella superficie chiusa (**teorema di Gauss**). Questo teorema ci permette di calcolare il campo elettrico di distribuzioni di cariche scegliendo opportune superfici in particolare con simmetrie.

Esempi.

a) cariche con simmetria sferica

Prendiamo una sfera che circonda la carica con simmetria sferica; il teorema di Gauss ci permette di dire che all'esterno della distribuzione sferica di cariche il campo è

$$E = Q / \varepsilon$$

come se la carica fosse concentrata nel centro di simmetria. Invece, se prendiamo una sfera interna alla distribuzione di cariche, il campo è nullo.

b) cariche distribuite uniformemente in una sfera di raggio R

All'esterno è come nel caso precedente, mentre all'interno della sfera il campo sarà

$$E = \frac{1}{4} \Pi \varepsilon * (Qr/R)$$

dove r è il raggio della sfera interna che stiamo considerando. Quindi all'interno di una sfera carica uniformemente il campo è lineare, mentre all'esterno è quello determinato dalla forza di Coulomb.

c) campo generato da un filo uniformemente carico con densità di carica lineare λ

Il campo E sarà uguale a

$\lambda/2\Pi\varepsilon r$

dove r è la distanza dal filo. In questo caso prenderemo come superficie un cilindro con asse il filo uniformemente carico.

d) distribuzione piana omogenea di cariche con densità sigma

In questo caso il campo sarà uguale a

$$\sigma/2\varepsilon$$

Il fattore 2 tiene conto del fatto che la superficie carica ha due facce. Se abbiamo un conduttore formato da due facce piane uniformemente cariche (condensatore) il campo sarà nullo all'esterno delle facce e pari a q/ε .